Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(7): 4176-4188, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38385763

RESUMO

BACKGROUND: Turmeric cultivation primarily thrives in India, followed by Bangladesh, Cambodia, Thailand, China, Malaysia, Indonesia and the Philippines. India leads globally in both area and production of turmeric. Despite this, there is a recognized gap in research regarding the impact of climate change on site suitability of turmeric. The primary objective of the present study was to evaluate both the present and future suitability of turmeric cultivation within the humid tropical region of Kerala, India, by employing advanced geospatial techniques. The research utilized meteorological data from the Indian Meteorological Department for the period of 1986-2020 as historical data and projected future data from the Coupled Model Intercomparison Project Phase 6 (CMIP6). Four climatic scenarios of shared socioeconomic pathway (SSP) from the Intergovernmental Panel on Climate Change AR6 model of MIROC6 for the year 2050 (SSP 1-2.6, SSP 2-4.5, SSP 3-7.0 and SSP 5-8.5) were used. RESULTS: The results showed that suitable area for turmeric cultivation is declining in future scenario and this decline can be primarily attributed to fluctuations in temperature and an anticipated increase in rainfall in the year 2050. Notable changes in the spatial distribution of suitable areas over time were observed through the application of geographic information system (GIS) techniques. Importantly, as per the suitability criteria provided by ICAR-National Bureau of Soil Survey and Land Use Planning (ICAR-NBSS & LUP), all the districts in Kerala exhibited moderately suitable conditions for turmeric cultivation. With the GIS tools, the study identified highly suitable, moderately suitable, marginally suitable and not suitable areas of turmeric cultivation in Kerala. Presently 28% of area falls under highly suitable, 41% of area falls under moderately suitable and 11% falls under not suitable for turmeric cultivation. However, considering the projected scenarios for 2050 under the SSP framework, there will be a significant decrease in highly suitable area by 19% under SSP 5-8.5. This reduction in area will have an impact on the productivity of the crop as a result of changes in temperature and rainfall patterns. CONCLUSION: The outcome of the present research suggests that the state of Kerala needs to implement suitable climate change adaptation and management strategies for sustaining the turmeric cultivation. Additionally, the present study includes a discussion on potential management strategies to address the challenges posed by changing climatic conditions for optimizing turmeric production in the region. © 2024 Society of Chemical Industry.


Assuntos
Curcuma , Complexo Ferro-Dextran , Solo , Mudança Climática , Temperatura
2.
Phys Rev E ; 107(4-1): 044703, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37198758

RESUMO

The mesogen 1,''7''-bis(4-cyanobiphenyl-4'-yl)heptane (CB7CB), doped with a small quantity of an amphiphilic compound, is examined in its biphasic state in which twist-bend nematic (N_{TB}) drops are dispersed in the isotropic fluid. Various flexoelectric and electrokinetic responses of small drops in their escaped-radial-like (ER) geometry, and also of larger ones with parabolic focal conic defects, are discussed. A pair of confocal parabolas with their axes along the applied low-frequency electric field undergo periodic dimensional changes so as to contribute flexoelectrically to free-energy reduction. In an ER droplet, the same result is achieved by periodic relocations of the hedgehog core. Sine-wave fields of low frequency and high voltage excite patterned states near zero-voltage crossings and homeotropic alignment at peak voltages. ER drops also exhibit electrohydrodynamic effects; in relatively weak fields, they undergo translatory motion with a velocity that is a quadratic in the field strength; the drift, which occurs over a very wide frequency range, extending from dc to MHz region, is enabled by radial symmetry breaking that their off-centered geometry entails; and the drift direction reverses across a critical frequency. In high fields, vortical flows occurring within an ER N_{TB} drop become discernible. The hydrodynamic effects are discussed based on the Taylor-Melcher leaky dielectric model.

3.
Phys Rev E ; 107(3-1): 034706, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37073013

RESUMO

The mesogen CB7CB [1″,7″-bis(4-cyanobiphenyl-4'-yl)heptane], mixed with a small quantity of a long chain amphiphile, is examined for the structural features of twist-bend nematic (N_{TB}) drops acting as colloidal inclusions in the isotropic and nematic environments. In the isotropic phase, the drops nucleating in the radial (splay) geometry develop toward escaped radial, off-centered structures, involving both splay and bend distortions. With further growth, they transform into low-birefringence (near-homeotropic) objects, within which remarkably well-organized networks of parabolic focal conic defects evolve in time. In electrically reoriented near-homeotropic N_{TB} drops, the pseudolayers develop an undulatory boundary possibly attributable to saddle-splay elasticity. In the matrix of the planar nematic phase, N_{TB} droplets appearing as radial hedgehogs attain stability in the dipolar geometry, through their association with hyperbolic hedgehogs. With growth, on transformation of the hyperbolic defect into its topologically equivalent Saturn ring around the N_{TB} drop, the geometry turns quadrupolar. Significantly, dipoles are stable in smaller drops, while quadrupoles are stable in larger ones. The dipole-quadrupole transformation is reversible, but is hysteretic with respect to drop size. Importantly, this transformation is often mediated by nucleation of two loop disclinations, one appearing at a marginally lower temperature than the other. The existence of a metastable state with partial formation of a Saturn ring and persistence of the hyperbolic hedgehog raises a question relating to the conservation of topological charge. In twisted nematics, this state features in the formation of a giant unknot that binds all N_{TB} drops together.

4.
Phys Rev E ; 105(2-1): 024709, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291176

RESUMO

Binary mixtures of the mesogen [1″,7″-bis(4-cyanobiphenyl-4'-yl)heptane] and a long chain amphiphile (e.g., 2-octadecoxypropanol) are examined for the structure, stability, and electro-optical behavior of nematic drops dispersed in the isotropic phase, in planar cells. Subjected to tangential boundary conditions, the drops adopt, besides the escaped concentric and untwisted bipolar geometries, the less common bound vortex geometry with a pair of half-strength disclination lines. The concentric drop, as it grows, switches its axis from an in-layer to the layer-normal direction corresponding to the stablest of all geometries. Bipolar drops in equilibrium have their axes parallel to the easy axis of the cell. Obliquely oriented bipolar drops rotate to attain the equilibrium disposition by the shorter of the clockwise and anticlockwise routes, the extent of rotation decreasing exponentially with time. The bipolar structure is marginally less stable than the concentric, and transforms to the latter geometry occasionally. In bound vortex drops, the separation between the lines varies as the drop diameter, the bipolar and concentric geometries appearing as the limiting cases. The complex course of Fréedericksz transition in all the different types of drops terminates in the division of the original large drop into many smaller drops, each with a surface charge 2, in conformity with the Poincaré-Hopf theorem. In low frequency electric fields, concentric drops exhibit flexoelectro-optic rotation in evidence of their escaped character.

5.
Virusdisease ; 32(2): 305-313, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34423100

RESUMO

Masking of symptoms in winter and their re-appearance in black pepper (Piper nigrum L.) infected with piper yellow mottle virus (PYMoV) in summer is common, especially on new flushes that appear after pre-monsoon showers. Plants of nineteen cultivars of black pepper infected with PYMoV but without any visible symptoms were grown in a polyhouse under natural conditions and in a greenhouse under controlled conditions from January 2019 to January 2020. The number of plants expressing symptoms in the polyhouse increased gradually from 1% during the 3rd standard meteorological week (SMW) (16 January) to 41% during the 21st SMW (22 May), when the afternoon temperature was 30-40 °C and relative humidity (RH) was 75-93%, but began declining thereafter until the 53rd SMW (1 January), when the afternoon temperature was 30-36 °C and RH was 65-86%. The proportion of plants expressing symptoms varied with the cultivar. However, in the greenhouse, in which temperature and RH were maintained at approximately 26 °C and 80%, respectively, not more than 2% of the plants expressed symptoms. The number of symptomatic plants was positively correlated to maximum temperature (T Max) and maximum relative humidity (RH Max) in the afternoon. Based on this observation, a model for predicting the percentage of symptomatic plants was developed using stepwise regression analysis. Plants at the two sites did not differ significantly in the concentration of virus (virus titre) but differed significantly in the content of total carbohydrates, lipid peroxidase, and phenols. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13337-021-00686-3.

6.
Phys Rev E ; 103(4-1): 042701, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005968

RESUMO

Colloidal systems comprising solid or fluid particles dispersed in nematic monodomains are known to be a convenient means to study topological defects. Recent experiments have shown that twist-bend nematic (N_{TB}) droplets in a nematic matrix act as colloidal particles that lead to the formation of elastic dipoles, quadrupoles, and their ordered clusters. In this study, we examine the effect of low-frequency (f∼mHz) electric fields on such defect configurations. We find that (i) the hyperbolic hedgehogs of elastic dipoles shift toward the negative electrode in static fields and perform oscillatory motion in AC fields, indicating the presence of nonvanishing flexoelectric polarization in the field-free state; (ii) the elastic dipoles, propelled by forces of backflow due to coupled flexoelectric and dielectric distortions, drift uniformly along their axes with the N_{TB} drops in lead; (iii) the translational velocity v_{d} increases linearly with both f and the diameter of N_{TB} drops; and (iv) with increasing applied voltage U, v_{d}(U) exhibits a monotonic, slightly nonlinear variation at f≤200mHz, tending toward linearity at higher frequencies.

7.
Soft Matter ; 16(32): 7479-7491, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32720673

RESUMO

Colloids formed of solid/fluid particle dispersions in oriented nematic liquid crystals are known to be an ideal means of realizing fundamentally significant topological defect geometries. We find, experimentally, that twist-bend nematic (NTB) droplets formed in the N-NTB biphasic regime, either of pure compounds or mesogenic mixtures, completely mimic colloidal particles in their ability to generate a rich variety of defects. In the biphasic regime, the topological features of both liquid crystal colloids and chiral nematic droplets are revealed by (i) topological dipoles, quadrupoles and their patterned clusters formed in planar nematic liquid crystals orientationally perturbed by coexisting NTB drops, (ii) the transformation of hyperbolic hedgehogs into knotted Saturn rings encircling the NTB drops dispersed in a 90°-twisted nematic matrix and (iii) the Frank-Pryce defect texture evident in smaller (relative to sample thickness) NTB drops. In larger drops with fingerlike outgrowths, additional line defects appear; most of these are deemed to be pairs of disclinations to which are attached pairs of screw dislocations intervening in the growth process of the NTB droplets.

8.
Phys Rev E ; 101(3-1): 032704, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32290021

RESUMO

We report experimental studies on the phase behavior of binary mixtures of 1″,7″-bis(4-cyanobiphenyl-4'-yl)heptane (CB7CB) and 4,4-diheptyloxyazoxybenzene, which exhibit, apart from the nematic (N) and twist-bend nematic (N_{TB}) phases, the induced smectic-A (Sm-A) phase for weight fraction of CB7CB between 0.05 and 0.70. In planar nematic layers, the N_{TB} phase separates as droplets of tactoidlike planform; the chirality of droplets manifests in the optical dissimilarity between their opposite angular ends. Our main result is that, in the appropriate two phase region, Sm-A nuclei with positive dielectric anisotropy change over to disks immersed in the nematic above some electric field, their edges decorated by periodic bright spots, a result which was earlier reported in another binary system exhibiting the induced Sm-A phase [R. Pratibha and N. V. Madhusudana, Physica A 224, 9 (1996)10.1016/0378-4371(95)00311-8]. We develop a simple theory for the threshold of this distortion, which is a periodic undulation of the edge of the disk, demonstrating that it arises from saddle-splay elasticity of Sm-A, the low Sm-A-N interfacial tension unable to suppress the distortion. The observed increases in the number of bright spots with field, and with the radius of the disk at a given field, in both the experimental systems are also accounted for by the model. The distortion, which results in the most direct visualization of saddle splay in Sm-A, is also exhibited by disks nucleating on surfaces treated for homeotropic anchoring.

9.
Indian J Exp Biol ; 54(5): 354-60, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27319055

RESUMO

Expression of symptoms in black pepper plants (Piper nigrum) infected with Piper yellow mottle virus (PYMoV) vary depending on the season, being high during summer months. Here, we explored the influence of temperature on symptom expression in PYMoV infected P. nigrum. Our controlled environment study revealed increase in virus titer, total proteins, IAA and reducing sugars when exposed to temperature stress. There was change in the 2-D separated protein before and after exposure. The 2-D proteomics LC-MS identified host and viral proteins suggesting virus-host interaction during symptom expression. The analysis as well as detection of host biochemical compounds may help in understanding the detailed mechanisms underlying the viral replication and damage to the crop, and thereby plan management strategies.


Assuntos
Badnavirus/patogenicidade , Piper nigrum/virologia , Temperatura , Badnavirus/genética , Badnavirus/crescimento & desenvolvimento , Badnavirus/metabolismo , Metabolismo dos Carboidratos , Cromatografia de Fase Reversa , Eletroforese em Gel Bidimensional , Interações Hospedeiro-Patógeno , Ácidos Indolacéticos/metabolismo , Oxirredução , Fenóis/metabolismo , Piper nigrum/metabolismo , Proteínas de Plantas/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem , Carga Viral , Proteínas Virais/metabolismo , Replicação Viral
10.
Phys Rev E ; 93(2): 022706, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26986387

RESUMO

This paper concerns the instability behavior of a nematic liquid crystal in the region of dielectric inversion frequency for different waveforms of the exciting electric field. The critical frequency separating the regimes of dielectric and electroconvective primary bifurcation states shows a notable dependence on the waveform. In particular, it is found to undergo a large downshift for square-wave and sawtooth-wave fields as compared to sine-wave and triangle-wave fields. This seems to underscore the significance of harmonics in nonsinusoidal fields for the evolution of patterned electroconvective states. The study also deals with the flow pattern associated with the periodic state and the sequence of secondary instabilities occurring at higher fields to emphasize the role of the Carr-Helfrich mechanism for the instabilities in this region. The relevance of dielectric heating to the formation of transient structures is also pointed out.

11.
Artigo em Inglês | MEDLINE | ID: mdl-26465487

RESUMO

The electric Freedericksz transition is a second-order quadratic effect, which, in a planarly aligned nematic liquid crystal layer, manifests above a threshold field as a homogeneous symmetric distortion with maximum director-tilt in the midplane. We find that, upon excitation by a low frequency (<0.2Hz) square-wave field, the instability becomes spatially and temporally varying. This is demonstrated using calamitic liquid crystals, initially in the 90°-twisted planar configuration. The distortion occurs close to the negative electrode following each polarity switch and, for low-voltage amplitudes, decays completely in time. We use the elastically favorable geometry of Brochard-Leger walls to establish the location of maximum distortion. Thus, at successive polarity changes, the direction of extension of both annular and open walls switches between the alignment directions at the two substrates. For high voltages, this direction is largely along the midplane director, while remaining marginally oscillatory. These results are broadly understood by taking into account the time-varying and inhomogeneous field conditions that prevail soon after the polarity reverses. Polarity dependence of the instability is traced to the formation of intrinsic double layers that lead to an asymmetry in field distribution in the presence of an external bias. Momentary field elevation near the negative electrode following a voltage sign reversal leads to locally enhanced dielectric and gradient flexoelectric torques, which accounts for the surface-like phenomenon observed at low voltages. These spatiotemporal effects, also found earlier for other instabilities, are generic in nature.

12.
Artigo em Inglês | MEDLINE | ID: mdl-25353816

RESUMO

The Bobylev-Pikin striped-pattern state induced by a homogeneous electric field is a volume flexoelectric instability, originating in the midregion of a planarly aligned nematic liquid crystal layer. We find that the instability acquires a spatiotemporal character upon excitation by a low frequency (0.5 Hz) square wave field. This is demonstrated using a bent-core liquid crystal, initially in the 90°-twisted planar configuration. The flexoelectric modulation appears close to the cathode at each polarity reversal and, at low voltage amplitudes, decays completely as the field becomes steady. Correspondingly, at successive polarity changes, the stripe direction switches between the alignment directions at the two substrates. For large voltages, the stripes formed nearly along the alignment direction at the cathode gradually reorient toward the midplane director. These observations are generally attributed to inhomogeneous and time-dependent field conditions that come to exist after each polarity reversal. Polarity dependence of the instability is attributed to the formation of intrinsic double layers that bring about an asymmetry in surface fields. Momentary field elevation near the cathode following a voltage sign reversal and concomitant gradient flexoelectric polarization are considered the key factors in accounting for the surfacelike modulation observed at low voltages.

13.
Artigo em Inglês | MEDLINE | ID: mdl-23496532

RESUMO

We report, for a rodlike nematic liquid crystal with small positive dielectric and conductivity anisotropies, and in the 90°-twisted configuration, low frequency (<2 Hz) square wave electric field generated Carr-Helfrich director modulation appearing transiently over a few seconds at each polarity reversal and vanishing almost completely under steady field conditions. Significantly, the instability is polarity sensitive, with the maximum distortion localized in the vicinity of the negative electrode, rather than in the midplane of the layer. This is revealed by the wave vector alternating in the two halves of the driving cycle between the alignment directions at the two substrates. Besides the Carr-Helfrich mechanism, quadrupolar flexoelectric polarization arising under electric field gradient is strongly indicated as being involved in the development of the transient periodic order. Similar transient instability is also observed in other nematic compounds with varying combinations of dielectric and conductivity anisotropies, showing its general nature. The study also deals with various characteristics of the electro-optic effect that emerge from the temporal variation of optical response for different driving voltages, frequencies, and temperatures.


Assuntos
Cristais Líquidos/química , Cristais Líquidos/efeitos da radiação , Modelos Químicos , Modelos Moleculares , Refratometria/métodos , Simulação por Computador , Campos Eletromagnéticos , Conformação Molecular/efeitos da radiação
14.
Artigo em Inglês | MEDLINE | ID: mdl-24483464

RESUMO

The observation of two polarity-sensitive electrical responses found in the low-frequency (<1 Hz) regime of a square wave field is reported for an achiral rodlike smectic-C liquid crystal with negative dielectric and conductivity anisotropies and in the 90°-twisted configuration. The first involves a transient director modulation appearing at each polarity reversal and vanishing under steady field conditions. The instability is polarity sensitive, with the maximum distortion localized near the negative electrode instead of the sample midplane. This is inferred from the wave-vector orientation alternating in the two halves of the driving cycle between the alignment directions at the two substrates. Various electro-optic characteristics of this temporal phenomenon are also described. Following a similar observation in nematic liquid crystals, we associate the transient periodic order with the Carr-Helfrich mechanism assisted by quadrupolar flexoelectric polarization obtaining under electric field gradients. The second polarity-sensitive effect manifests in the relative shift of the periodic Fréedericksz pattern upon field reversal. The shift, which is linear in field for low fields, tends to saturate for large fields. It is interpreted as due to flexoelectric polarization associated primarily with the c director twist about the layer normal. A model involving a periodic wedgelike band, which has the twist localized within it and is flanked by two uniformly and transversely aligned regions, accounts for the flexoelectric shift of the optical pattern.

15.
J Phys Chem B ; 116(2): 782-93, 2012 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22168575

RESUMO

Bent-core nematic electroconvection is a relatively less explored area, particularly in the low frequency regime. We focus here mainly on the instabilities occurring below 100 Hz in an initially planar monodomain of a bent-core nematic liquid crystal, which is negative in both conductivity and dielectric anisotropies. An unprecedented observation is the occurrence of three distinct bifurcation modes in a narrow region (10-17 Hz) that manifest, in the order of increasing threshold, as longitudinal, oblique and normal rolls. Whereas the second of these is the flexoelectrically enabled Carr-Helfrich mode, the other two are nonstandard electroconvection modes. Significantly, the first two instabilities remain unquenched even after bifurcation into the normal roll state below their respective codimension-2 points. The hybrid roll states display complex flows and morphologies. The study includes measurement of electrical parameters relevant to the discussion of results.

16.
J Phys Chem B ; 114(5): 1745-50, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20085237

RESUMO

We report on measurements of dielectric permittivity epsilon, electrical conductivity sigma, elastic moduli k(ii), and rotational viscosity gamma for a bent-core nematic liquid crystal. The static permittivity anisotropy epsilon(a) = epsilon(parallel)-epsilon(perpendicular) is negative; at a given temperature in the interval 107-123 degrees C, epsilon(parallel) shows two relaxations falling in the frequency bands 20-200 kHz and 0.9-2 MHz; epsilon(perpendicular) also shows a relaxation between 0.9 and 5 MHz. The conductivity anisotropy sigma(a) = sigma(parallel)-sigma(perpendicular) is negative at low frequencies; it changes sign twice at frequencies f(1) and f(2) that increase with temperature, in the ranges 6.5-10 and 95-600 kHz, respectively. Surprisingly, the splay modulus k(11) is considerably greater than the bend modulus k(33) in the entire nematic range. Viscous relaxation is more complex than in calamitic systems involving at least a two-step process. The gamma values are an order of magnitude greater compared to calamitics.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(3 Pt 1): 031706, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21230090

RESUMO

We report on the anisotropic electrohydrodynamic states formed over a wide temperature range (∼45 °C) in a planarly aligned bent-core nematic liquid crystal driven by fields of frequency in the range 0.1 Hz-1 MHz. Three different primary bifurcation scenarios are generated in the voltage-frequency (V-f) plane, depending on the temperature T. These, under increasing T, are characterized by the pattern sequences (i) in-plane longitudinal rolls (ILR)→in-plane normal rolls 1 (INR1), (ii) Williams rolls (WR)→ILR→INR1, and (iii) WR→INR2→INR1. Temperature-induced ILR→INR2 transition, the first example of its kind, points to elastic anisotropy as possibly the determining factor in wave vector selection. In the ILR and INR states, at threshold, the director modulations are predominantly azimuthal, and the streamlines, mainly normal to the wave vector, lie in the sample plane. Well above threshold, growing director deviations lead to narrow disclination loops that evolve in regular arrays, with their area density being exponential in voltage. The defects drift in a coordinated manner along the flow lines with a speed that scales nonlinearly with voltage; they mediate in the eventual occurrence of turbulence. The current theories of anisotropic convection based on static electrical parameters fail to account for the observed high-frequency instabilities. The study includes (i) a quantitative characterization of the critical parameter functions V(c)(f), V(c)(T), q(c)(f), and q(c)(T), with q(c) denoting the critical pattern wave number, and (ii) measurement of electrical and elastic parameters of relevance to electroconvection; the latter show anomalous features supporting the cluster hypothesis.

18.
J Phys Chem B ; 114(1): 10-21, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20000827

RESUMO

We report the results of investigations on the anisotropic electrohydrodynamic states arising in a highly conducting, planarly aligned, bent-core nematic liquid crystal driven by ac fields of frequency f in the range from 10 Hz to 1 MHz. Pattern morphologywise, two f regimes are distinguished. The low-f regime, wherein the primary bifurcation is to a state of periodic longitudinal stripes (LS), extends to an unprecedentedly large f, in the range 150-550 kHz, depending on the temperature T. This is followed by the high-f regime wherein periodic normal stripes (NS) constitute the primary instability. Both instabilities involve predominant director modulations and streamlines in the layer plane. The transitional frequency between the two regimes is linear in temperature. The curve V(c)(f) shows a nonlinear increase for the LS state and decrease for the NS state. V(c)(T) is an ever increasing curve close to the nematic-isotropic point for both states. The wavenumber of LS varies directly as V, and that of NS shows nearly the same behavior. The pattern period versus f is increasing for LS but decreasing for NS. Both instability states exhibit complex, light-polarization-dependent lens action. Well above the threshold, disclination loops of regular geometry appear along the stripes. They drift in a coordinated manner along the flow lines. At very high voltages, the instability turns strongly time dependent. The current models of anisotropic convection based on static electrical parameters fail to account for the observed instabilities.

19.
J Phys Chem B ; 113(27): 9168-74, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19522471

RESUMO

We report on the converse flexoelectric effect in two bent-core nematic liquid crystals with opposite dielectric anisotropies. The results are based on electro-optic investigations of inplane field-driven distortions in homeotropic samples (the Helfrich method). They are interpreted by an extension of the Helfrich theory that takes into account the higher order distortions. The bend flexocoefficient for both the compounds is of the usual order of magnitude as in calamitics, unlike in a previously investigated bent-core nematic for which giant values of the bend flexocoefficient are reported. In order to resolve this discrepancy, we propose a molecular model with nonpolar clusters showing quadrupolar flexoelectricity. The study also includes measurements on surface polarization instabilities in the dielectrically positive material; the splay flexocoefficient thereby deduced is also of the conventional order.

20.
J Phys Chem B ; 112(43): 13509-17, 2008 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-18808177

RESUMO

We report on the behavior of cylindrical walls formed in a substrate-free nematic film of PCH5 under the action of an in-plane ac field. In the film, with vertical molecular alignment at all the limiting surfaces, annular Brochard-Leger walls are induced well above the bend-Freedericksz threshold. They exhibit, at high field strengths, a new type of instability not encountered in sandwich, or any other, cell configuration. It manifests as a shearing of the loop-wall between the opposite free-surfaces. The shear strain is measured as a function of time, field strength, frequency, and temperature. Significantly, the strain is linear in field strength. The origin of shear and its dependence on field variables are explained through an adaptation of the Carr-Helfrich mechanism of charge separation. The sheared wall is stable against pincement up to several times the threshold field, and divides itself into two fragments under a large enough strain. With the shear distortion, linear defects appear in the opposite splay-bend regions, just as Neel lines in Bloch walls of magnetic systems. At very low frequencies, flexoelectric influence on distortion is revealed.


Assuntos
Campos Eletromagnéticos , Cristais Líquidos/química , Algoritmos , Eletroquímica , Eletrodos , Conformação Molecular , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...